Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.8 - Modeling Using Variation - Exercise Set - Page 489: 33

Answer

$90\; milliroentgens\; per \; hour $.

Work Step by Step

Step 1:- Translate the statement to form an equation. Let the intensity of radiation be $I$ and the distance from machine be $D$. Because $I$ varies inversely as $D^2$ we have: $\Rightarrow I=\frac{k}{D^2}$ ...... (1) Step 2:- Substitute the first set of values into the equation to find the value of $k$. The given values are $D=3\; meters$ and $I=62.5\; milliroentgens\; per \; hour$. Substitute into the equation (1). $\Rightarrow 62.5=\frac{k}{3^2}$ $\Rightarrow 62.5=\frac{k}{9}$ Multiply both sides by $9$. $\Rightarrow 9\cdot 62.5=9\cdot \frac{k}{9}$ Simplify. $\Rightarrow 562.5=k$ Step 3:- Substitute the value of $k$ into the original equation. Substitute $k=562.5$ into the equation (1). $\Rightarrow I=\frac{562.5}{D^2}$ ...... (2) Step 4:- Solve the equation to find the required value. Substitute $D=2.5\;meters$ into the equation (2). $\Rightarrow I=\frac{562.5}{(2.5)^2}$ Simplify. $\Rightarrow I=90$ Hence, the intensity is $90\; milliroentgens\; per \; hour $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.