Answer
$-3198$
Work Step by Step
$a_{n+1}-a_n=-8(n+1)-15-(-8n-15)=-8$
Since the difference between consecutive terms is constant, the given sequence is arithmetic.
The formula for the finite sum of the arithmetic sequence is:
$S_{n}=\frac{n(a_{1}+a_{n})}{2}$
$a_{n}=-8n-15$
$a_{1}=-8(1)-15=-23$
.
$a_{26}=-8(26)-15=-223$
$S_{26}=\frac{26(a_{1}+a_{26})}{2}=\frac{26(-23-223)}{2}=-3198$