Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 8 - Radical Functions - 8.4 Solving Radical Equations - 8.4 Exercises - Page 655: 87

Answer

$n= 5 $

Work Step by Step

Given \begin{equation} \sqrt{2 n+6}+\sqrt{n-4}=5. \end{equation} This is a radical equation. The solution steps are shown below. \begin{equation} \begin{aligned} \sqrt{2 n+6}+\sqrt{n-4}&=5\\ \sqrt{2 n+6} &= 5-\sqrt{n-4}\\ \left( \sqrt{2 n+6} \right)^2 & = \left(5-\sqrt{n-4} \right)^2\\ 2n+6&= 25-10\sqrt{n-4}+n-4\\ n-15 &= -10\sqrt{n-4}\\ \left( n-15 \right)^2&= \left( -10\sqrt{n-4} \right)^2\\ n^2-30n+225& = 100n-400\\ n^2-130n+625&= 0 \end{aligned} \end{equation} We use the quadratic formula: \begin{equation} \begin{aligned} a& =1,\ b=-130,\ c=625 \\ n & =\frac{-b \pm \sqrt{b^2-4 a c}}{2 a} \\ n & =\frac{-(-130) \pm \sqrt{(-130)^2-4 \cdot 1 \cdot(625)}}{2 \cdot 1} \\ & =\frac{130 \pm 120}{2} \\ \Longrightarrow n& =\frac{130 + 120}{2}\\ &=125\\ n& =\frac{130 - 120}{2}\\ &=5. \end{aligned} \end{equation} Check \begin{equation} \begin{aligned} \sqrt{2 \cdot (125)+6}+\sqrt{125-4}&\stackrel{?}{=} 5\\ 27& =5\quad \quad \textbf{False}\\ \sqrt{2 \cdot (5)+6}+\sqrt{5-4}&\stackrel{?}{=} 5\\ 5& =5\quad \quad \textbf{True}\\ \end{aligned} \end{equation} The solution is $n= 5 $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.