Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 7 - Rational Functions - 7.4 Adding and Subtracting Rational Expressions - 7.4 Exercises - Page 589: 40

Answer

$\frac{h^2-h-14}{(h+3)(h+2)}$

Work Step by Step

The student used the wrong LCD. The correct LCD can be found by first factoring the denominator of the second fraction. Given \begin{equation} \frac{h-3}{h+2}-\frac{h+5}{h^2+5 h+6}. \end{equation} First factor the denominator of the second fraction. \begin{equation} \begin{aligned} h^2+5h+6 & =h^2+2 h+3h+6 \\ & =\left(h^2+2 h\right)+(3 h+6) \\ &=h(h+2)+3(h+2)\\ & =(h+3)(h+2). \end{aligned} \end{equation} Find the LCD of the fractions which is: $\mathbf{LCD}=(h+3)(h+2)$. Perform subtraction: \begin{equation} \begin{aligned} \frac{h-3}{h+2}-\frac{h+5}{h^2+5 h+6}&=\frac{h-3}{h+2}-\frac{h+5}{(h+3)(h+2)} \\ &= \frac{(h+3)}{(h+3)}\cdot \frac{(h-3)}{(h+2)}-\frac{h+5}{(h+3)(h+2)}\\ &= \frac{h^2-9-h-5}{(h+3)(h+2)}\\ & = \frac{h^2-h-14}{(h+3)(h+2)}. \end{aligned} \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.