Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 7 - Rational Functions - 7.4 Adding and Subtracting Rational Expressions - 7.4 Exercises - Page 589: 37

Answer

$\frac{2x^2+3x-11}{(x-7)(x+2)}$

Work Step by Step

Given \begin{equation} \frac{x+5}{x-7}+\frac{x+3}{x+2}. \end{equation} The student added the numerators of the fractions without first expressing the fractions over a common denominator. Find the LCD of the fractions which is: $\mathbf{LCD}=(x-7)(x+2)$. Perform addition: \begin{equation} \begin{aligned} \frac{x+5}{x-7}+\frac{x+3}{x+2}&=\frac{(x+5)(x+2)}{(x-7)(x+2)}+\frac{(x+3)(x-7)}{(x-7)(x+2)} \\ &= \frac{x^2+7x+10+x^2-4x-21}{(x-7)(x+2)}\\ &= \frac{2x^2+3x-11}{(x-7)(x+2)}. \end{aligned} \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.