Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 7 - Rational Functions - 7.4 Adding and Subtracting Rational Expressions - 7.4 Exercises - Page 589: 20

Answer

$LCM=(2 x+5)(x-7)(x+3)$

Work Step by Step

Given \begin{equation} \frac{x-5}{2 x^2-9 x-35}, \quad \frac{x+6}{2 x^2+11 x+15}. \end{equation} First factor each denominator as shown below. $$\textbf{Denominator 1}$$ \begin{equation} \begin{aligned} 2x^2-9x-35&=2x^2+5x-14 x-35 \\ &= \left(2 x^2+5 x\right)+(-14 x-35)\\ &= x(2 x+5)-7(2 x+5)\\ &=(2 x+5)(x-7). \end{aligned} \end{equation} $$\textbf{Denominator 2}$$ \begin{equation} \begin{aligned} 2x^2+11x+15&= 2x^2+5x+6x+15\\ &= \left(2 x^2+5 x\right)+(6 x+15)\\ &=x(2 x+5)+3(2 x+5)\\ &= (2 x+5)(x+3). \end{aligned} \end{equation} Rewrite the fractions. \begin{equation} \begin{aligned} \frac{x-5}{2 x^2-9 x-35} &= \frac{(x-5)(x+3)}{(2 x+5)(x-7)(x+3)}\\ \frac{x+6}{2 x^2+11 x+15}&=\frac{(x+6)(x-7)}{ (2 x+5)(x-7)(x+3)}. \end{aligned} \end{equation} Hence, the $\mathbf{LCM}=(2 x+5)(x-7)(x+3)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.