Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - 4.6 Solving Quadratic Equations by Using the Quadratic Formula - 4.6 Exercises - Page 374: 85

Answer

$(-4,19)$, $(1.71,8.39)$

Work Step by Step

Given $$ \begin{cases} & y=3 x^2+5 x-9 \\ & y=-0.5 x^2-3 x+15. \end{cases} $$ Set the two equations equal and solve for the values of $x$. $$ \begin{aligned} \left(3 x^2+5 x-9\right) \cdot 2 & =\left(-\frac{1}{2} x^2-3 x+15\right) \cdot 2 \\ 6 x^2+10 x-18 & =-x^2-6 x+30 \\ 6 x^2+x^2+10 x+6 x & =30+18 \\ 7 x^2+16 x & =48 \\ 7 x^2+16 x-48 & =0 \end{aligned} $$ $$ \begin{aligned} & a=7 \\ & b=16 \\ & c=-48 \end{aligned} $$ $$ \begin{aligned} x&=\frac{-16 \pm \sqrt{16^2-4 \cdot 7(-48)}}{2 \cdot 7} \\ &=\frac{-16 \pm 40}{14}\\ x_1 & =\frac{-16 - 40}{14} \\ & =-4 \\ x_2 & =\frac{-16 + 40}{14} \\ & =\frac{12}{7}\\ &\approx 1.71. \end{aligned} $$ Find the corresponding $y$ values using either of the given equations. $$ \begin{aligned} y&=3 \cdot(-4)^2+5\cdot (-4)-9\\ & = 19\\ y&=3 \cdot(12/7)^2+5\cdot (12/7)-9\\ & \approx 8.38776. \end{aligned} $$ Plot the two functions in the same window to check the solution(s). The solution is $(-4,19)$ and $(1.71,8.39)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.