Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - 4.6 Solving Quadratic Equations by Using the Quadratic Formula - 4.6 Exercises - Page 374: 82

Answer

$(-39.11,183.52)$, $(1.11,2.48)$

Work Step by Step

Given $$ \begin{cases} & y=0.25 x^2+5 x-3.4 \\ & y=-4.5 x+7.5. \end{cases} $$ Set the two equations equal and solve for the values of $x$. $$ \begin{aligned} \frac{0.25 x^2}{0.25}+\frac{5 x}{0.25}-\frac{3.4}{0.25} & =-\frac{4.5 x}{0.25}+\frac{7.5}{0.25} \\ x^2+20 x-13.6 & =-18 x+30 \\ x^2+20 x+18 x & =30+13.6 \\ x^2+38 x+19^2 & =43.6+19^2 \\ (x+19)^2 & =404.6\\ x+19 & = \pm \sqrt{404.6} \\ x & =-19 \pm \sqrt{404.6} \end{aligned} $$ The solution is: $$ \begin{aligned} x & =-19-\sqrt{404,6} \\ & \approx39.11467 \\ x & =-19+\sqrt{404.6} \\ & \approx 1.11467 \end{aligned} $$ Find the corresponding $y$ values using either of the given equations.$$ \begin{aligned} y&=-4.5 (-39.11467)+7.5\\ & \approx 183.516\\ y&=-4.5 (1.11467)+7.5\\ & \approx 2.484. \end{aligned} $$ Plot the two functions in the same window to check the solution(s).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.