Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 2 - Systems of Linear Equations and Inequalities - 2.2 Solving Systems of Equations Using the Substitution Method - 2.2 Exercises - Page 154: 61

Answer

$(x,y)= (-6,-7)$ (consistent independent system)

Work Step by Step

Given $$\begin{cases} \frac{2}{3}x+\frac{1}{2}y &= -\frac{15}{2}\\ \frac{3}{4}x-y&= \frac{5}{2}\\ \end{cases}$$ Lets first get rid of the fraction in the first equation to make things easier. $$\begin{aligned} (2)\cdot(3)\cdot\left(\frac{2}{3}x+\frac{1}{2}y\right) &= -\frac{15}{2}\cdot(2)\cdot(3)\\ 4x+3y&=-45\\ \end{aligned}$$ Now solve for $y$ in the second equation: $$\begin{aligned} \frac{3}{4}x-y&= \frac{5}{2}\\ -y&= -\frac{3}{4}x+\frac{5}{2}\\ y&=\frac{3}{4}x-\frac{5}{2}\\ &=0.75x-2.5\\ \end{aligned}$$ Substitute the result into the above equation. $$\begin{aligned} 4x+3\cdot\left(0.75x-2.5 \right)&=-45\\ 4x+2.25x-7.5&=-45\\ 6.25x=7.5-45\\ x&=-\frac{37.5}{6.25}\\ x&= -6 \end{aligned}$$ and $$\begin{aligned} y&=0.75\cdot(-6)-2.5\\ &= -7. \end{aligned}$$ Check $$\begin{aligned} \frac{3}{4}\cdot(-6)-(-7)&\stackrel{?}{=} \frac{5}{2}\\ -\frac{9}{2}+7&\stackrel{?}{=} \frac{5}{2}\\ \frac{14-9}{2}&\stackrel{?}{=}\frac{5}{2}\\ \frac{5}{2}&= \frac{5}{2}\checkmark\\ \frac{2}{3}(-6)+\frac{1}{2}(-7) &\stackrel{?}{=} -\frac{15}{2}\\ -\frac{15}{2}&=-\frac{15}{2}\checkmark. \end{aligned}$$ The solution set is $(x,y)= (-6,-7)$ . The system is consistent and independent because it has a single solution.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.