Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 2 - Section 2.4 - Linear Inequalities and Problem Solving - Exercise Set - Page 85: 33



Work Step by Step

$-3(2x-1) \lt -4[2+3(x+2)]$ Applying distributive property, $-6x+3 \lt -4[2+3x+6]$ $-6x+3 \lt -4[8+3x]$ $-6x+3 \lt -32-12x$ Add $-3$ on both sides. $-6x+3 -3 \lt -32-12x -3$ $-6x \lt -35-12x $ Add $12x$ on both sides. $-6x+12x \lt -35-12x +12x$ $6x \lt -35$ Divide by 6 on both sides. $x \lt \frac{-35}{6}$ In Interval notation : $(-∞,\frac{-35}{6})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.