Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 9 - Chapter 9 Test - Page 641: 26

Answer

$\left\{3\right\}$

Work Step by Step

Using the properties of logarithms, the given equation, $ \log_8(x+5)+\log_8(x-2)=1 ,$ is equivalent to \begin{align*}\require{cancel} \log_8 [(x+5)(x-2)]&=1 &(\text{use }\log_b (xy)=\log_b x+\log_b y) .\end{align*} Since $\log_b y=x$ implies $y=b^x$, the equation above implies \begin{align*}\require{cancel} (x+5)(x-2)&=8^1 \\ (x+5)(x-2)&=8 .\end{align*} In the form $ax^2+bx+c=0$, the equation above is equivalent to \begin{align*}\require{cancel} x(x)+x(-2)+5(x)+5(-2)&=8 &(\text{use }(a+b)(c+d)=ac+ad+bc+bd) \\ x^2-2x+5x-10&=8 \\ x^2+(-2x+5x)+(-10-8)&=0 \\ x^2+3x-18&=0 .\end{align*} Using the factoring of trinomials, the equation above is equivalent to \begin{align*}\require{cancel} (x+6)(x-3)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} x+6=0 & x-3=0 \\ x=-6 & x=3 .\end{array} If $x=-6$, the term $\log_8 (x+5)$ of the original equation becomes $\log_8 (-1)$. This is undefined since in $\log_b x$, $x$ and $b$ should be positive numbers with $b\ne1$. Hence, the solution set of the equation $ \log_8(x+5)+\log_8(x-2)=1 $ is $ \left\{3\right\} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.