Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 9 - Chapter 9 Test - Page 641: 24

Answer

a) $\dfrac{\log19}{\log3}$ b) $\dfrac{\ln19}{\ln3}$ c) $2.6801$

Work Step by Step

Using $\log_ba=\dfrac{\log_xa}{\log_xb}$ or the Change-of-Base Formula, the given expression, $ \log_3 19 $, is equivalent to \begin{align*} \text{a) using common logarithms: } & \dfrac{\log_{10}19}{\log_{10}3} \\\\&= \dfrac{\log19}{\log3} \\\\ \text{b) using natural logarithms: } & \dfrac{\log_e19}{\log_e3} \\\\&= \dfrac{\ln19}{\ln3} \\\\ \text{c) approximate value: } & 2.6801 .\end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.