Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 9 - Chapter 9 Test - Page 641: 21

Answer

$\log_b \dfrac{r^{1/4}s^2}{t^{2/3}}$

Work Step by Step

Using the properties of logarithms, the given expression, $ \dfrac{1}{4}\log_b r+2\log_b s-\dfrac{2}{3}\log_b t ,$ is equivalent to \begin{align*}\require{cancel} & \log_b r^{1/4}+\log_b s^2-\log_b t^{2/3} &(\text{use }\log_b x^y=y\log_b x) \\&= \log_b r^{1/4}s^2-\log_b t^{2/3} &(\text{use }\log_b (xy)=\log_b x+\log_b y) \\\\&= \log_b \dfrac{r^{1/4}s^2}{t^{2/3}} &(\text{use }\log_b \dfrac{x}{y}=\log_b x-\log_b y) .\end{align*} Hence, the expression $ \dfrac{1}{4}\log_b r+2\log_b s-\dfrac{2}{3}\log_b t $ is equivalent to $ \log_b \dfrac{r^{1/4}s^2}{t^{2/3}} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.