Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 11 - Quadratic Functions and Equations - 11.4 Applications Involving Quadratic Equations - 11.4 Exercise Set - Page 723: 16

Answer

$\frac{-\pi s+\sqrt{{{\left( \pi s \right)}^{2}}+4\pi A}}{2\pi }$

Work Step by Step

$A=\pi {{r}^{2}}+\pi rs$ Subtract $A$ on both sides of the equation. $\begin{align} & A=\pi {{r}^{2}}+\pi rs \\ & A-A=\pi {{r}^{2}}+\pi rs-A \\ & 0=\pi {{r}^{2}}+\pi rs-A \end{align}$ Now, using the quadratic formula, $r=\frac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ Substitute the values of the equation in the quadratic formula, $a=\pi ,b=\pi s,c=-A$ Then, the equation is, $\begin{align} & r=\frac{-\pi s\pm \sqrt{{{\left( \pi s \right)}^{2}}-4\times \pi \times \left( -A \right)}}{2\times \pi } \\ & =\frac{-\pi s\pm \sqrt{{{\left( \pi s \right)}^{2}}+4\pi A}}{2\pi } \\ & =\frac{-\pi s\pm \sqrt{{{\left( \pi s \right)}^{2}}+4\pi A}}{2\pi } \end{align}$ We only consider $ r \ge 0 $. $r=\frac{-\pi s+\sqrt{{{\left( \pi s \right)}^{2}}+4\pi A}}{2\pi }$ Thus, the value is $r=\frac{-\pi s+\sqrt{{{\left( \pi s \right)}^{2}}+4\pi A}}{2\pi }$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.