#### Answer

$\left( 2, -\dfrac{9}{2} \right)$

#### Work Step by Step

With the given points, then
\begin{array}{l}\require{cancel}
x_1=
-2
,\\x_2=
6
,\\y_1=
1
,\\y_2=
-10
.\end{array}
Using $\left( \dfrac{x_1+x_2}{2}, \dfrac{y_1+y_2}{2} \right)$ or the Midpoint Formula, then the midpoint of the line segment with the endpoints given above is
\begin{array}{l}\require{cancel}
\left( \dfrac{x_1+x_2}{2}, \dfrac{y_1+y_2}{2} \right)
\\\\=
\left( \dfrac{-2+6}{2}, \dfrac{1+(-10)}{2} \right)
\\\\=
\left( \dfrac{4}{2}, \dfrac{-9}{2} \right)
\\\\=
\left( 2, -\dfrac{9}{2} \right)
.\end{array}