Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 10 - Exponents and Radicals - Study Summary - Practice Exercises: 18

Answer

$\sqrt{185}\approx13.601 \text{ units}$

Work Step by Step

$\bf{\text{Solution Outline:}}$ Use the Distance Formula to find the distance between the given points $\left( -2,1 \right)$ and $\left( 6,-10 \right)$. $\bf{\text{Solution Details:}}$ With the given points, then $x_1= -2 ,$ $x_2= 6 ,$ $y_1= 1 ,$ and $y_2= -10 .$ Using the Distance Formula which is given by $d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2} ,$ then \begin{array}{l}\require{cancel} d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2} \\\\ d=\sqrt{(-2-6)^2+(1-(-10))^2} \\\\ d=\sqrt{(-2-6)^2+(1+10)^2} \\\\ d=\sqrt{(-8)^2+(11)^2} \\\\ d=\sqrt{64+121} \\\\ d=\sqrt{185} .\end{array} Hence, the distance is $ \sqrt{185}\approx13.601 \text{ units} .$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.