Answer
$(3x-2y)(9x^2+6xy+4y^2)$
Work Step by Step
Using $a^3-b^3=(a-b)(a^2+ab+b^2)$, or the factoring of the difference of $2$ cubes, the factored form of the given expression, $
27x^3-8y^3
,$ is \begin{array}{l}\require{cancel}
(3x-2y)[(3x)^2+3x(2y)+(2y)^2]
\\\\=
(3x-2y)(9x^2+6xy+4y^2)
.\end{array}