Answer
See below
Work Step by Step
Let $(v_1,...v_n)$ be a base for $B$
Obtain $x=a_1v_1+a_2v_2+...+a_nv_n, f\forall x\in B, c \in C$
then $[x]_B=\begin{bmatrix}
a_1\\ a_1 \\ . \\ . \\ a_n
\end{bmatrix}$
Thus, we have $[cx]_B=\begin{bmatrix}
ca_1\\ ca_1 \\ . \\ . \\ ca_n
\end{bmatrix}=c\begin{bmatrix}
a_1\\ a_1 \\ . \\ . \\ a_n
\end{bmatrix}=c[x]_B$
Hence, the property is true.