Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 4 - Vector Spaces - 4.7 Change of Basis - Problems - Page 319: 34

Answer

See answer below

Work Step by Step

We know that: $a(7-4x)+b(5x)=6-4x\\ c(1-2x)+d(2+x)=6-4x$ Thus $a(7-4x)+b(5x)\\ =7a-4ax+5bx =7a-x(4a-5b) =6-4x$ Thus $7a=6 \\ 4a-5b=-4\\ \rightarrow a=\frac{6}{7}\\ 4\frac{6}{7} -5b=-4 \rightarrow b=-\frac{4}{35}$ Hence, we have $v_B=(\frac{6}{7},-\frac{4}{35})$ Thus $ c(1-2x)+d(2+x)\\ =c-2cx+2d+dx\\ =(c+2d)+x(-2c+d)\\ =6-4x$ Thus $c+2d=6 \\ -2c+d=-4\\ 2(c+2d)+(-2c+d)=4 \rightarrow 5d=8 \rightarrow d=\frac{8}{5}\\ c+2\frac{8}{5}=6 \rightarrow c=\frac{14}{5}$ Hence, we have $v_C=(\frac{14}{5},\frac{8}{5})$ From problem 21 we have: $P_{C \leftarrow B}=\begin{bmatrix} 3 & -2\\ 2 & 1 \end{bmatrix}$ Since $v_C=P_{C \leftarrow B}v_B \rightarrow \begin{bmatrix} 3 & -2\\ 2 & 1 \end{bmatrix}\begin{bmatrix} \frac{6}{7}\\ \frac{-4}{35} \end{bmatrix}=\begin{bmatrix} \frac{19}{5}\\ \frac{8}{5} \end{bmatrix}=[P]_C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.