Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 4 - Vector Spaces - 4.7 Change of Basis - Problems - Page 319: 33

Answer

See answer below

Work Step by Step

We know that: $a(9,2)+b(4,-3)=(5,-3)\\ c(2,1)+d(-3,1)=(-5,3)$ Thus $a(9,2)+b(4,-3)=(5,-3) \\ \rightarrow (9a+4b,2a-3b)=(5,-3)$ Thus $9a+4b=5 \\ 2a-3b=-3\\ 3(9a+4b)+4(2a-3b)=3.5+4.(-3) \rightarrow 35a=-3 \rightarrow a=-\frac{3}{35}\\ 2(-\frac{3}{35})-3b=-3 \rightarrow b=-\frac{37}{35}$ Hence, we have $v_B=(-\frac{3}{35},-\frac{37}{35})$ Thus $c(2,1)+d(-3,1)=(-5,3) \\ \rightarrow (2c-3d,c+d)=(-5,3)$ Thus $2c-3d=-5 \\ c+d=3\\ 2c-3d+3(c+d)=-5 +3.3 \rightarrow 5c=4 \rightarrow c=\frac{4}{5}\\ \frac{4}{5}+d=3 \rightarrow d=\frac{11}{5}$ Hence, we have $v_C=(\frac{4}{5},\frac{11}{5})$ From problem 17 we have: $P_{C \leftarrow B}=\begin{bmatrix} 3 & -1\\ -1 & -2 \end{bmatrix}$ Since $v_C=P_{C \leftarrow B}v_B \rightarrow \begin{bmatrix} 3 & -1\\ -1 & -2 \end{bmatrix}\begin{bmatrix} -\frac{3}{35}\\ -\frac{37}{35} \end{bmatrix}=\begin{bmatrix} \frac{4}{5}\\ \frac{11}{5} \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.