Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 4 - Vector Spaces - 4.6 Bases and Dimension - Problems - Page 310: 39

Answer

See answers below

Work Step by Step

a) We are given: $A_1=\begin{bmatrix} 1 & 1\\ 0 & 1 \end{bmatrix}$ $A_2=\begin{bmatrix} 1 & 3\\ -1 & 0 \end{bmatrix}$ $A_3=\begin{bmatrix} 1 & 0\\ 1 & 2 \end{bmatrix}$ $A_4=\begin{bmatrix} 0 & -1\\ 2 & 3 \end{bmatrix}$ The matrixes must be $c_1A_1+c_2A_2+c_3A_3+c_4A_4=0$ We can obtain: $-c_1+c_2+c_3=0$ $c_1+3c_2+-c_4=0$ $-c_2+c_3+2c_4=0$ $c_1+2c_3+3c_4=0$ $\rightarrow \begin{bmatrix} -1 & 1 & 1 & 0 | 0 \\\ 1 & 3 &0 & -1 | 0\\ 0 & -1 & 1 & 2 | 0\\ 1 & 0 & 2 & 3 | 0 \end{bmatrix} \approx \begin{bmatrix} -1 & 1 & 1 & 0 | 0\\\ 0 & 4 &1 & -1 | 0\\ 0 & -1 & 1 & 2 | 0\\ 0 & 1 & 3 & 3 | 0 \end{bmatrix} \approx \begin{bmatrix} -1 & 1 & 1 & 0 | 0 \\\ 0 & 4 &1 & -1 | 0 \\ 0 & 0 & 5 & 7 | 0 \\ 0 & 0 & 4 & 5 | 0 \end{bmatrix} \approx \begin{bmatrix} -1 & 1 & 1 & 0 | 0\\ 0 & 4 &1 & -1 | 0\\ 0 & 0 & 5 & 7 | 0\\ 0 & 0 & 0 & 3 | 0 \end{bmatrix} $ $\rightarrow rank (A)=4 \rightarrow c_1=c_2=c_3=c_4 $ Hence $\{A_1,A_2,A_3,A_4\}$ is a basis for $M_2(R)$ b) Assume $A_5=\begin{bmatrix} 5 & 6\\ 7 & 8 \end{bmatrix}$ as a linear combination of the basis $\{A_1,A_2,A_3,A_4\}$ Let $c_1A_1+c_2A_2+c_3A_3+c_4A_4=A_5$ We obtain: $\begin{bmatrix} -1 & 1 & 1 & 0 | 5\\ 1 & 3 & 0 & -1 |6 \\ 0 & -1 & 1 & 2 | 7 \\ 1 & 0 & 2 & 3 | 8 \end{bmatrix} \approx \begin{bmatrix} -1 & 1 & 1 & 0 | 5\\ 0 & 4 & 1 & -1 |11 \\ 0 & -1 & 1 & 2 | 7\\ 0 & 1 & 3 & 3 | 13 \end{bmatrix} \approx \begin{bmatrix} -1 & 1 & 1 & 0 | 5\\ 0 & 4 & 1 & -1 |11 \\ 0 & 0 & 5 & 7 | 39\\ 0 & 0 & 4 & 5| 20 \end{bmatrix} \approx \begin{bmatrix} -1 & 1 & 1 & 0 | 5\\ 0 & 4 & 1 & -1 |11 \\ 0 & 0 & 5 & 7 | 39\\ 0 & 0 & 0 & 3| 56 \end{bmatrix} $ We have: $c_4=\frac{56}{3}$ $c_3=39-7c_4=39-7(\frac{56}{3})=\frac{-55}{3}$ $c_2=\frac{11+\frac{56}{3}-(-\frac{55}{3})}{4}=12$ $c_1=-[5-(-\frac{55}{3})-12]=\frac{-34}{3}$ Therefore, we can express the vector $\begin{bmatrix} 5 & 6\\ 7 & 8 \end{bmatrix}$ as $\frac{-34}{3}A_1+12A_2-\frac{55}{3}A_3+\frac{56}{3}A_4$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.