Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 4 - Vector Spaces - 4.6 Bases and Dimension - Problems - Page 310: 36

Answer

See answer below

Work Step by Step

Assume that: $v_1=1+\alpha x^2$ $v_2=1+x+x^2$ $v_3=2+x$ Then we have: $c_1v_1+c_2v_2+c_3v_3=0$ $c_1(1+\alpha x^2)+c_2(1+x+x^2)+c_3(2+x)=0$ We obtain: $\begin{bmatrix} 0 & 1 & 2\\ 0 & 1 & 1 \\ \alpha & 1 & 0 \end{bmatrix} \approx\begin{bmatrix} 0 & 1 & 2\\ 0 & 1 & 1 \\ 0 & \alpha -1 & 2\alpha \end{bmatrix} \approx \begin{bmatrix} 1 & 1 & 2\\ 0 & 1 & 1 \\ 0 & 0 & -\alpha -1 \end{bmatrix}$ To span $P_2$: $\rightarrow -\alpha -1 \ne 0$ $\rightarrow \alpha \ne -1$ The set of vectors $\{v_1,v_2,v_3\}$ span $P_2$ if $\alpha \ne-1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.