Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 4 - Vector Spaces - 4.6 Bases and Dimension - Problems - Page 310: 37

Answer

See answer below

Work Step by Step

Assume that: $p_1(x)=1+x$ $p_2(x)=-x+x^2$ $p_3(x)=1+2x^2$ Then we have: $c_1p_1(x)+c_2p_2(x)+c_3p_3(x)=0$ $c_1(1+x)+c_2(-x+x^2)+c_3(1+2x^2)=0$ We obtain: $\begin{bmatrix} 1 & 0 & 1\\ 1 & -1 & 0 \\ 0 & 1 & 2 \end{bmatrix} \approx\begin{bmatrix} 1 & 0 & 1\\ 0 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \approx \begin{bmatrix} 1 & 0 & 1\\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ $\rightarrow C_1+C_3 = 0$ $C_2+C_3=0$ $C_3=0$ $\rightarrow C_1=C_2=C_3=0$ The set of vectors $\{p_1,p_2,p_3\}$ is a basis for $P_2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.