Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 10 - The Laplace Transform and Some Elementary Applications - 10.8 Impulsive Driving Terms: The Dirac Delta Function - Problems - Page 710: 11

Answer

See below

Work Step by Step

Taking the Laplace transform of both sides of the given differential equation and imposing the initial conditions yields: $[s^2(Y)-sY(0)-y'(0)]+9Y(s)=\frac{30}{s^2+4}+e^{-\frac{\pi s}{4}}\\ s(Y)(s^2+9)-=\frac{30}{s^2+4}+e^{-\frac{\pi s}{4}}$ which implies that: $Y(s)=\frac{30}{(s^2+4)(s^2+9)}+\frac{e^{-\frac{\pi s}{4}}}{(s^2+4)(s^2+9)}\\ =6(\frac{1}{s^2+4}-\frac{1}{s^2+9})+\frac{e^{-\frac{\pi s}{4}}\times3}{3(s^2+9)}$ Taking the inverse Laplace transform of both sides gives $y(t)=L^{-1}[6(\frac{1}{s^2+4}-\frac{1}{s^2+9})+\frac{e^{-\frac{\pi s}{4}}\times3}{3(s^2+9)}]$ We finally obtain $y(t)=3\sin 2t-3\sin 3t+\frac{\sin 3(t-\frac{\pi}{4})}{3}u_{\frac{\pi}{4}}(t)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.