Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 10 - The Laplace Transform and Some Elementary Applications - 10.8 Impulsive Driving Terms: The Dirac Delta Function - Problems - Page 710: 10

Answer

See below

Work Step by Step

Taking the Laplace transform of both sides of the given differential equation and imposing the initial conditions yields: $[s^2(Y)-sY(0)-y'(0)]+6[sY(s)-y(0)]+13Y(s)=e^{-\frac{\pi s}{4}}\\ s(Y)(s^2+6s+13)-5s-35=e^{-\frac{\pi s}{4}}$ which implies that: $Y(s)=\frac{e^{-\frac{\pi s}{4}}}{(s+3)^2+4}+\frac{5s}{(s+3)^2+4}+\frac{35}{(s+3)^2+4}\\ =\frac{e^{-\frac{\pi s}{4}}}{(s+3)^2+4}+\frac{5(s+3)}{(s+3)^2+4}-\frac{50}{(s+3)^2+4}$ Taking the inverse Laplace transform of both sides gives $y(t)=L^{-1}[\frac{e^{-\frac{\pi s}{4}}}{(s+3)^2+4}+\frac{5(s+3)}{(s+3)^2+4}-\frac{50}{(s+3)^2+4}]$ We finally obtain $y(t)=\frac{1}{2}e^{-3(t-\frac{\pi}{4})}\sin 2(t-\frac{\pi}{4})u_{\frac{\pi}{4}}(t)+5e^{-3t}\cos 2t-25e^{-3t}\sin 2t$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.