College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Chapter 3 Test - Page 359: 8

Answer

$f(x)=(x-1)(x-1)(x-2i)(x+2i)$

Work Step by Step

See The Rational Zero Theorem: If $\frac{p}{q}$ is a zero of the polynomial $f(x) $with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=x^4-2x^{3}+5x^{2}-8x+4$ a. Candidates for zeros, $ \frac{p}{q}:$ $p:\qquad \pm 1, \pm2,\pm4,$ $q:\qquad \pm 1, $ $\displaystyle \frac{p}{q}:\qquad \pm 1,\pm2,\pm4$ b. Try for $x=1:$ $\begin{array}{lllll} \underline{1}| &1& -2& 5 & -8 & 4\\ & & 1 &-1 & 4 & -4\\ & -- & -- & -- & --\\ & 1&-1 & 4& -4 & |\underline{0} \end{array}$ $1$ is a zero, $f(x)=(x-1)(x^3-x^{2} +4x-4)$ c. Factorising the quadrinomial, $x^3-x^2+4x-4$, $x^3-x^2+4x-4=x^2(x-1)+4(x-1)=(x^2+4)(x-1)$, thus, $f(x)=(x-1)(x-1)(x^2+4)$. zeros of $f$ satisfy: $(x-1)^2(x^2+4)=0$ $x-1=0, x=1$ or $x^2+4=0, x=\pm2i$, $f(x)=(x-1)(x-1)(x-2i)(x+2i)$ $x\displaystyle \in\{-2i, 2i, 1\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.