College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Chapter 3 Test - Page 359: 7

Answer

$x \in \{-1-i, -1+i, 3\}$

Work Step by Step

See The Rational Zero Theorem: If $\frac{p}{q}$ is a zero of the polynomial $f(x) $ with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=x^{3}-x^{2}-4x-6$ a. Candidates for zeros, $\frac{p}{q}:$ $p:\qquad \pm 1, \pm2,\pm3,\pm6,$ $q:\qquad \pm 1, $ $\displaystyle \frac{p}{q}:\qquad \pm 1,\pm2,\pm3,\pm6$ b. Try for $x=3:$ $\begin{array}{lllll} \underline{3}| & 1 & -1& -4 & -6\\ & & 3& 6 & 6\\ & -- & -- & -- & --\\ & 1 & 2 & 2 & |\underline{0} \end{array}$ $3$ is a zero, $f(x)=(x-3)(x^{2} +2x+2)$ c. Solving for the trinomial using the quadratic formula for the quadratic equation of $ax^2+bx+c$, $x=\frac{-b\pm\sqrt {b^2-4ac}}{2a}$. In this case, $x^2+2x+2$, $x= \frac{-2\pm\sqrt {2^2-4\times1 \times2}}{2\times 1}=-=\frac{-2\pm 2i}{2}=-1\pm i$ $x \in \{-1-i, -1+i, 3\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.