College Algebra (6th Edition)

Published by Pearson
ISBN 10: 0-32178-228-3
ISBN 13: 978-0-32178-228-1

Chapter P - Prerequisites: Fundamental Concepts of Algebra - Exercise Set P.5 - Page 74: 68



Work Step by Step

We are given the expression $6x^{2}-18x-60$. First, we can use the distributive property to factor out 6, the greatest common factor of both terms. $6x^{2}-18x-60=6(x^{2}-3x-10)$ Since the middle term of $x^{2}-3x-10$ is -3 and the last term is -10, we need to find two factors of -10 that have a sum of -3. We know that -5 and 2 are factors of -10 and that $-5+2=-3$. Therefore, $6(x^{2}-3x-10)$ can be factored as $6(x-5)(x+2)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.