College Algebra (6th Edition)

Published by Pearson
ISBN 10: 0-32178-228-3
ISBN 13: 978-0-32178-228-1

Chapter 6 - Matrices and Determinants - Exercise Set 6.5 - Page 654: 74

Answer

See proof

Work Step by Step

Consider the system: $\begin{cases} (a_1+a_2)x+(b_1+b_2)y=c_1+c_2\\ a_2x+b_2y=c_2 \end{cases}$ Compute the determinant $D_{new}$ of the coefficients of this system: $D_{new}=\begin{vmatrix}a_1+a_2&b_1+b_2\\a_2&b_2\end{vmatrix}=(a_1+a_2)b_2-a_2(b_1+b_2)$ $=a_1b_2+a_2b_2-a_2b_1-a_2b_2$ $=a_1b_2-a_2b_1$ The determinant $D_{old}$ of the original system is: $D_{old}=\begin{vmatrix}a_1&b_1\\a_2&b_2\end{vmatrix}=a_1b_2-a_2b_1$ We notice that $D_{new}=D_{old}$. Compute $D_{x_{new}}$ and $D_{x_{old}}$: $D_{x_{new}}=\begin{vmatrix}c_1+c_2&b_1+b_2\\c_2&b_2\end{vmatrix}$ $=b_2(c_1+c_2)-(b_1+b_2)c_2$ $=b_2c_1+b_2c_2-b_1c_2-b_2c_2$ $=b_2c_1-b_1c_2$ $D_{x_{old}}=\begin{vmatrix}c_1&b_1\\c_2&b_2\end{vmatrix}$ $=b_2c_1-b_1c_2$ We notice that $D_{x_{old}}=D_{x_{new}}$. In the same way we can prove that $D_{y_{old}}=D_{y_{new}}$. This means we have: $\dfrac{D_{x_{new}}}{D_{new}}=\dfrac{D_{x_{old}}}{D_{old}}$ $\dfrac{D_{y_{new}}}{D_{new}}=\dfrac{D_{y_{old}}}{D_{old}}$ Therefore the two systems have the same solutions.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.