College Algebra (10th Edition)

Published by Pearson
ISBN 10: 0321979478
ISBN 13: 978-0-32197-947-6

Chapter 8 - Cumulative Review - Page 637: 5

Answer

The only solution is $ x=2.5$

Work Step by Step

We can write the expression as a single logarithm using the rule: $\log_b(m)+\log_b(n)=\log_b(m\cdot n)$ So, $\log_3(x-1)+\log_3(2x+1)=2$ $\log_3\left((x-1)(2x+1)\right)=2$ $2x^2+x-2x-1=3^2$ $2x^2-x-1=9$ $2x^2-x-10=0$ $(2x-5)(x+2)=0$ $x_1+2=0$ $x_1=-2$ $2x_2-5=0$ $2x_2=5$ $x_2=2.5$ Check for extraneous solutions: $\log_3(-2-1)+\log_3(2(-2)+1)=2$ $\log_3(-3)+\log_3(-3)=2$ Taking the logarithm of a negative number is not possible; thus x=-2 isn't a solution. $\log_3(2.5-1)+\log_3(2(2.5)+1)=2$ $\log_3(1.5)+\log_3(6)=2$ $\log_3(1.5\cdot6)=2$ $\log_3(9)=2$ $2=2\checkmark$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.