Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 9 - Solving Quadratic Equations - 9.6 - Solving Nonlinear Systems of Equations - Exercises - Page 530: 18

Answer

The solutions are $(-\frac{3}{2},-4)$ and $(2,10)$.

Work Step by Step

The given system is $y=2x^2+3x-4$ ...... (1) $y-4x=2$ ...... (2) Substitute $2x^2+3x-4$ for $y$ in equation (2). $\Rightarrow 2x^2+3x-4-4x=2$ Subtract $2$ from each side. $\Rightarrow 2x^2+3x-4-4x-2=2-2$ Simplify. $\Rightarrow 2x^2-x-6=0$ Factor the polynomial. $\Rightarrow (2x+3)(x-2)=0$ Use zero product property. $\Rightarrow 2x+3=0$ or $x-2=0$ Solve for $x$. $\Rightarrow x=-\frac{3}{2}$ or $x=2$ Substitute $-\frac{3}{2}$ for $x$ in equation (2). $\Rightarrow y-4(-\frac{3}{2})=2$ Simplify. $\Rightarrow y+6=2$ Subtract $6$ from each side. $\Rightarrow y+6-6=2-6$ Simplify. $\Rightarrow y=-4$ Substitute $2$ for $x$ in equation (1). $\Rightarrow y-4(2)=2$ Simplify. $\Rightarrow y-8=2$ Add $8$ to each side. $\Rightarrow y-8+8=2+8$ Simplify. $\Rightarrow y=10$ Hence, the solutions are $(-\frac{3}{2},-4)$ and $(2,10)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.