Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 9 - Solving Quadratic Equations - 9.6 - Solving Nonlinear Systems of Equations - Exercises - Page 530: 10

Answer

The solutions are $(2,0)$ and $(6,4)$.

Work Step by Step

The given system is $y=\frac{1}{2}x^2-3x+4$ ...... (1) $y=x-2$ ...... (2) Graph each equation. The point of intersections are $A=(2,0)$ and $B=(6,4)$. Check: $(x,y)=(2,0)$ Equation (1). $\Rightarrow y=\frac{1}{2}x^2-3x+4$ $\Rightarrow 0=\frac{1}{2}(2)^2-3(2)+4$ $\Rightarrow 0=2-6+4$ $\Rightarrow 0=6-6$ $\Rightarrow 0=0$ True. Equation (2). $\Rightarrow y=x-2$ $\Rightarrow 0=2-2$ $\Rightarrow 0=0$ True. Check: $(x,y)=(6,4)$ Equation (1). $\Rightarrow y=\frac{1}{2}x^2-3x+4$ $\Rightarrow 4=\frac{1}{2}(6)^2-3(6)+4$ $\Rightarrow 4=18-18+4$ $\Rightarrow 4=4$ True. Equation (2). $\Rightarrow y=x-2$ $\Rightarrow 4=6-2$ $\Rightarrow 4=4$ True. Hence, the solutions are $(2,0)$ and $(6,4)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.