Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 8 - Review Exercises - Page 618: 122



Work Step by Step

DeMoivre's Theorem: If $z=r(cos~θ+i~sin~θ)$, then $z^n=r^n(cos~nθ+i~sin~nθ)$ $z=2(cos~\frac{4\pi}{15}+i~sin~\frac{4\pi}{15})$ $z^5=2^5[cos~(5\frac{4\pi}{15})+i~sin~(5\frac{4\pi}{15})]$ $z^5=32(cos~\frac{4\pi}{3}+i~sin~\frac{4\pi}{3})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.