Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 7 - 7.2 - Verifying Trigonometric Identities - 7.2 Exercises - Page 521: 60


The identity is veriified. $tan(cos^{-1}\frac{x+1}{2})=\frac{\sqrt {4-(x+1)^2}}{x+1}$

Work Step by Step

Make $z=\frac{x+1}{2}$ $y=cos^{-1}z$, domain: $-1\leq z\leq1$, range: $0\leq y\leq\pi$: $z=cos~y$ $z^2=cos^2y$ $1-z^2=1-cos^2y$ $1-z^2=sin^2y$ $sin~y=+\sqrt {1-z^2}~~$ (Use only the $+$ because $0\leq y\leq\pi$) $tan(cos^{-1}\frac{x+1}{2})=tan(cos^{-1}z)=tan~y=\frac{sin~y}{cos~y}=\frac{\sqrt {1-z^2}}{z}=\frac{\sqrt {1-(\frac{x+1}{2})^2}}{\frac{x+1}{2}}=\frac{\sqrt {1-\frac{(x+1)^2}{4}}}{\frac{x+1}{2}}\frac{2}{2}=\frac{\sqrt {4-(x+1)^2}}{x+1}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.