Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 10 - 10.3 - The Inverse of a Square Matrix - 10.3 Exercises - Page 736: 65b

Answer

$\begin{bmatrix} 1& 1& 1 \\ 2.5 & 4 & 2 \\ 1 & -2 & -2 \end{bmatrix} \begin{bmatrix} R \\ L \\ I \end{bmatrix}= \begin{bmatrix} 120 \\ 300 \\ 0 \end{bmatrix} $

Work Step by Step

We are told that the total number of flowers are $120$. From the previous part: $R+L+I=120 ....(1)$ $ 2.5 R+4L+2I=300 ...(2)$ $R=2(L+I) ....(3)$ Our goal is to write a matrix equation which corresponds to equations (1), (2) and (3). Thus, $X= \begin{bmatrix} 1& 1& 1 \\ 2.5 & 4 & 2 \\ 1 & -2 & -2 \end{bmatrix} \begin{bmatrix} R \\ L \\ I \end{bmatrix}= \begin{bmatrix} 120 \\ 300 \\ 0 \end{bmatrix} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.