#### Answer

$\frac{\sqrt {15}+\sqrt {10}+3\sqrt 3+3\sqrt 2}{1}$

#### Work Step by Step

$\frac{\sqrt 5+3}{\sqrt 3-\sqrt 2}\times\frac{\sqrt 3+\sqrt 2}{\sqrt 3+\sqrt 2}$
=$\frac{(\sqrt 5+3)\times(\sqrt 3+\sqrt 2)}{(\sqrt 3+\sqrt 2)(\sqrt 3-\sqrt 2)}$
=$\frac{\sqrt 5(\sqrt 3+\sqrt 2)+3(\sqrt 3+\sqrt 2)}{(\sqrt 3)^{2}-(\sqrt 2)^{2}}$
=$\frac{\sqrt {15}+\sqrt {10}+3\sqrt 3+3\sqrt 2}{3-2}$
=$\frac{\sqrt {15}+\sqrt {10}+3\sqrt 3+3\sqrt 2}{1}$