#### Answer

$x=0.00009$

#### Work Step by Step

Subtract $1$ from each side to obtain:
$$\log{9}-\log{x}=5$$
Recall:
(1) Product Property of Logarithms: $\log_a{b}+\log_a{c}=\log_a{bc}$.
(2) Quotient Property of Logarithms: $\log_a{b}-\log_a{c}=\log_a{\frac{b}{c}}$.
(3) Power Property of Logarithms: $\log_a{b^n} = n\cdot \log_a{b}$
Use the Quotient Property to obtain:
\begin{align*}
\log{9}-\log{x}&=5\\\\
\log{\frac{9}{x}}&=5
\end{align*}
Recall:
$$\log_a{b}=y \longleftrightarrow a^y=b$$
Use the definition above to obtain:
\begin{align*}
10^5&=\frac{9}{x}\\\\
x\left(10^5\right)&=x\left(\frac{9}{x}\right)\\\\
(10^5)x&=9\\\\
\frac{(10^5)x}{10^5}&=\frac{9}{10^5}\\\\
x&=\frac{9}{10^5}\\\\
x&=0.00009
\end{align*}