Algebra 2 Common Core

Published by Prentice Hall
ISBN 10: 0133186024
ISBN 13: 978-0-13318-602-4

Chapter 4 - Quadratic Functions and Equations - Square Roots and Radicals - Exercises - Page 225: 6

Answer

$$\dfrac{\sqrt{5}}{5}$$

Work Step by Step

RECALL: (1) For any real numbers $a \ge 0, b\ge0$, $\sqrt{ab}=\sqrt{a} \cdot \sqrt{b}$ (2) For any real numbers $a \ge 0, b\gt 0$, $\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{a}}{\sqrt{b}}$ Use rule (2) above to obtain: \begin{align*} \sqrt{\dfrac{3}{15}}&=\dfrac{\sqrt{3}}{\sqrt{15}}\\ \end{align*} Rationalize the denominator by multiplying $\sqrt{15}$ to both the numerator and denominator to obtain: \begin{align*} \dfrac{\sqrt{3}}{\sqrt{15}} \cdot \dfrac{\sqrt{15}}{\sqrt{15}}&=\dfrac{\sqrt{45}}{\sqrt{225}}\\\\ &=\dfrac{\sqrt{45}}{15}\\\\ &=\dfrac{\sqrt{9(5)}}{15}\\\\ &=\dfrac{\sqrt9 \cdot \sqrt5}{15}\\\\ &=\dfrac{3\sqrt5}{15} \end{align*} Cancel the common factor $3$ to obtain: \begin{align*} \require{cancel} \dfrac{3\sqrt5}{15}&=\dfrac{\cancel{3}\sqrt5}{\cancel{15}^5}\\\\ &=\dfrac{\sqrt5}{5} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.