Algebra 2 Common Core

Published by Prentice Hall
ISBN 10: 0133186024
ISBN 13: 978-0-13318-602-4

Chapter 4 - Quadratic Functions and Equations - 4-5 Quadratic Equations - Practice and Problem-Solving Exercises - Page 229: 11

Answer

$$x=\frac{3}{2}\text{ and } x=-1$$

Work Step by Step

Subtract $3$ from each side to obtain: $$2x^2-x-3=0$$ Factor the trinomial to obtain: $$(2x-3)(x+1)=0$$ Use the Zero-{Product Property by equating each factor to zero, then solve each equation to obtain: \begin{align*} 2x-3&=0 &\text{or}& &x+1=0\\ 2x&=3 &\text{or}& &x=-1\\ x&=\frac{3}{2} &\text{or}& &x=-1 \end{align*} Check: When $x=\frac{3}{2}$: \begin{align*} 2\left(\frac{3}{2}\right)^2-\frac{3}{2}&\stackrel{?}=3\\\\ 2\left(\frac{9}{4}\right)-\frac{3}{2}&\stackrel{?}=3\\\\ \frac{18}{4}-\frac{3}{2}&\stackrel{?}=3\\\\ \frac{9}{2}-\frac{3}{2}&\stackrel{?}=3\\\\ \frac{6}{2}&\stackrel{?}=3\\\\ 3&\stackrel{\checkmark}=3 \end{align*} When $x=-1$: \begin{align*} 2(-1)^2-(-1)&\stackrel{?}=3\\\\ 2(1)+1&\stackrel{?}=3\\\\ 3&\stackrel{\checkmark}=3 \end{align*} Therefore, the solutions to the given equation are $x=\frac{3}{2}\text{ and } x=-1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.