Answer
$\dfrac{9}{34} \approx 26.5\%$
Work Step by Step
The formula for the events would be $P(Q \space and \space R)=$ $P(Q)$ $\times$ $P(R)$ since the events are independent:
$P(Q \space and \space R)=$ $P(Q)$ $\times$ $P(R)$
$P(Q \space and \space R)=$ $\dfrac{12}{17}$ $\times$ $\dfrac{3}{8}$
$P(Q \space and \space R)=\dfrac{9}{34}$
$P(Q \space and \space R)=26.5$%