Answer
$\dfrac{1}{6}$ or $16.\overline{6} \%$
Work Step by Step
The formula for the events would be $P(Q \space and \space R)=$ $P(Q)$ $\times$ $P(R)$ since the events are independent:
$P(Q \space and \space R)=$ $P(Q)$ $\times$ $P(R)$
$P(Q \space and \space R)=$ $\dfrac{1}{4}$ $\times$ $\dfrac{2}{3}$
$P(Q \space and \space R)=\dfrac{2}{12}=\dfrac{1}{6}$
$P(Q\space and \space R)=16.\overline{6}\%$