Answer
$x=8 \sqrt 3; y=16$
Work Step by Step
Consider the lengths of the sides of the triangle, $x$ and $y$.
$\sin \theta=\dfrac{Opposite}{Hypotenuse}=\dfrac{x}{h}$
and $\cos \theta=\dfrac{Adjacent}{Hypotenuse}=\dfrac{y}{h}$
Here, $\sin 60^{\circ}=\dfrac{y}{h} \implies\sqrt 3=\dfrac{x}{ {8}}$
This gives: $x = 8 \sqrt 3$
Now, $ \dfrac{2}{1}=\dfrac{y}{8}$
This gives: $y=8 \times 2 =16$
Hence, $x=8 \sqrt 3; y=16$