#### Answer

$x=-11$
$x={\dfrac{14}{3}}$

#### Work Step by Step

$x=\dfrac{-b±{\sqrt {b^{2}-4ac}}}{2a}$ and $3x^{2}+19x-154=0$.Therefore, $a=3$,$b=19$ and $c=-154$
Substitute the values:
$x=\dfrac{-19±{\sqrt {19^{2}-4(3)(-154)}}}{2(3)}$
=$\dfrac{-19±{\sqrt {361+1848}}}{6}$
=$\dfrac{-19± {\sqrt {2209}}}{6}$
=$\dfrac{-19±47}{6}$
Separate the equation into plus and minus equations:
$x=\dfrac{-19-17}{6}=-11$
$x=\dfrac{-19+47}{6}={\dfrac{14}{3}}$