#### Answer

$_{8}$C$_{5}$ is greater

#### Work Step by Step

You have $_{7}$C$_{4}$ and $_{8}$C$_{5}$.Solve to find out which is larger:
A:
$_{7}$C$_{4}$=$\frac{7!}{4!(7-4)!}$ -simplify like terms-
$_{7}$C$_{4}$=$\frac{7!}{4! (3!)}$ -write using factorial-
$_{7}$C$_{4}$=$\frac{7*6*5*4*3*2*1}{(4*3*2*1)(3*2*1)}$ -simplify-
$_{7}$C$_{4}$=35
B:
$_{8}$C$_{5}$=$\frac{8!}{5!(8-5)!}$ -simplify like terms-
$_{8}$C$_{5}$=$\frac{8!}{5! (3!)}$ -write using factorial-
$_{8}$C$_{5}$=$\frac{8*7*6*5*4*3*2*1}{(5*4*3*2*1)(3*2*1)}$ -simplify-
$_{8}$C$_{5}$=56
$_{8}$C$_{5}$ is greater