Discrete Mathematics and Its Applications, Seventh Edition

Published by McGraw-Hill Education
ISBN 10: 0073383090
ISBN 13: 978-0-07338-309-5

Chapter 4 - Section 4.1 - Divisibility and Modular Arithmetic - Exercises - Page 244: 15

Answer

Let $m$ be a positive integer. From the proof below, we conclude that $a\equiv b \mod{m}$ if $a\mod{m}=b\mod{m}$.

Work Step by Step

Let $m$ be a positive integer s.t. $a\mod{m}=b\mod{m}$ for some other integer $b$. Then for $k\in \mathbb{Z}$, $a\mod{m}=b\mod{m}\cdot k$. Equivalently, for $j\in \mathbb{Z}$, $a\mod{m}\cdot j=b\mod{m}$. Thus $a\mod{m}\cdot j=b\mod{m}\cdot k$. $aj\mod{m}=a\mod{m}j\mod{m}=a(j\mod{m})=a\mod{m}$ $bk\mod{m}=b\mod{m}k\mod{m}=b(k\mod{m})=b\mod{m}$. Thus, $a\mod{m}=b\mod{m}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.