Discrete Mathematics and Its Applications, Seventh Edition

Published by McGraw-Hill Education
ISBN 10: 0073383090
ISBN 13: 978-0-07338-309-5

Chapter 2 - Section 2.6 - Matrices - Exercises - Page 184: 8

Answer

Calculate $A+B$ and $B+A$.

Work Step by Step

Consider the matrices with $a_{ij}$ and $b_{ij}$ real numbers: $$A=\begin{bmatrix}a_{11}&a_{12}&...&a_{1n}\\a_{21}&a_{22}&...&a_{2n}\\...&...&...&...\\a_{m1}&a_{m2}&...&a_{mn}\end{bmatrix}$$ $$B=\begin{bmatrix}b_{11}&b_{12}&...&b_{1n}\\b_{21}&b_{22}&...&b_{2n}\\...&...&...&...\\b_{m1}&b_{m2}&...&b_{mn}\end{bmatrix}$$ First calculate $A+B$: $$\begin{align*} A+B&=\begin{bmatrix}a_{11}&a_{12}&...&a_{1n}\\a_{21}&a_{22}&...&a_{2n}\\...&...&...&...\\a_{m1}&a_{m2}&...&a_{mn}\end{bmatrix}+\begin{bmatrix}b_{11}&b_{12}&...&b_{1n}\\b_{21}&b_{22}&...&b_{2n}\\...&...&...&...\\b_{m1}&b_{m2}&...&b_{mn}\end{bmatrix}\\ &=\begin{bmatrix}a_{11}+b_{11}&a_{12}+b_{12}&...&a_{1n}+b_{1n}\\a_{21}+b_{21}&a_{22}+b_{22}&...&a_{2n}+b_{2n}\\...&...&...&...\\a_{m1}+b_{m1}&a_{m2}+b_{m2}&...&a_{mn}+b_{mn}\end{bmatrix}. \end{align*}$$ Then calculate $B+A$: $$\begin{align*} B+A&=\begin{bmatrix}b_{11}&b_{12}&...&b_{1n}\\b_{21}&b_{22}&...&b_{2n}\\...&...&...&...\\b_{m1}&b_{m2}&...&b_{mn}\end{bmatrix}+\begin{bmatrix}a_{11}&a_{12}&...&a_{1n}\\a_{21}&a_{22}&...&a_{2n}\\...&...&...&...\\a_{m1}&a_{m2}&...&a_{mn}\end{bmatrix}\\ &=\begin{bmatrix}b_{11}+a_{11}&b_{12}+a_{12}&...&b_{1n}+a_{1n}\\b_{21}+a_{21}&b_{22}+a_{22}&...&b_{2n}+a_{2n}\\...&...&...&...\\b_{m1}+a_{m1}&b_{m2}+a_{m2}&...&b_{mn}+a_{mn}\end{bmatrix}. \end{align*}$$ Because $a_{ij}$ and $b_{ij}$ are real numbers and in the set of real numbers addition is commutative, we have: $$a_{ij}+b_{ij}=b_{ij}+a_{ij},\text{ where }i=1,2,...,m,j=1,2,...,n$$ We got that $$A+B=B+A.$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.