Discrete Mathematics and Its Applications, Seventh Edition

Published by McGraw-Hill Education
ISBN 10: 0073383090
ISBN 13: 978-0-07338-309-5

Chapter 2 - Section 2.6 - Matrices - Exercises - Page 184: 7

Answer

Calculate $0+A$ and $A+0$.

Work Step by Step

Consider the matrices: $$A=\begin{bmatrix}a_{11}&a_{12}&...&a_{1n}\\a_{21}&a_{22}&...&a_{2n}\\...&...&...&...\\a_{m1}&a_{m2}&...&a_{mn}\end{bmatrix}$$ $$0_{m\times n}=\begin{bmatrix}0&0&...&0\\0&0&...&0\\...&...&...&...\\0&0&...&0\end{bmatrix}$$ First calculate $0_{m\times n}+A$: $$\begin{align*} 0_{m\times n}+A&=\begin{bmatrix}0&0&...&0\\0&0&...&0\\...&...&...&...\\0&0&...&0\end{bmatrix}+\begin{bmatrix}a_{11}&a_{12}&...&a_{1n}\\a_{21}&a_{22}&...&a_{2n}\\...&...&...&...\\a_{m1}&a_{m2}&...&a_{mn}\end{bmatrix}\\ &=\begin{bmatrix}0+a_{11}&0+a_{12}&...&0+a_{1n}\\0+a_{21}&0+a_{22}&...&0+a_{2n}\\...&...&...&...\\0+a_{m1}&0+a_{m2}&...&0+a_{mn}\end{bmatrix}\\ &=\begin{bmatrix}a_{11}&a_{12}&...&a_{1n}\\a_{21}&a_{22}&...&a_{2n}\\...&...&...&...\\a_{m1}&a_{m2}&...&a_{mn}\end{bmatrix}\\ &=A. \end{align*}$$ We got that $$0_{m\times n}+A=A.\tag1$$ Then calculate $A+0_{m\times n}$: $$\begin{align*} A+0_{m\times n}&=\begin{bmatrix}a_{11}&a_{12}&...&a_{1n}\\a_{21}&a_{22}&...&a_{2n}\\...&...&...&...\\a_{m1}&a_{m2}&...&a_{mn}\end{bmatrix}+\begin{bmatrix}0&0&...&0\\0&0&...&0\\...&...&...&...\\0&0&...&0\end{bmatrix}\\ &=\begin{bmatrix}a_{11}+0&a_{12}+0&...&a_{1n}+0\\a_{21}+0&a_{22}+0&...&a_{2n}+0\\...&...&...&...\\a_{m1}+0&a_{m2}+0&...&a_{mn}+0\end{bmatrix}\\ &=\begin{bmatrix}a_{11}&a_{12}&...&a_{1n}\\a_{21}&a_{22}&...&a_{2n}\\...&...&...&...\\a_{m1}&a_{m2}&...&a_{mn}\end{bmatrix}\\ &=A. \end{align*}$$ We got that $$A+0_{m\times n}=A.\tag2$$ From $(1)$ and $(2)$ we get: $$0_{m\times n}+A=A+0_{m\times n}=A.$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.