Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 19 - Heat Engines and Refrigerators - Exercises and Problems - Page 553: 57

Answer

See the detailed answer below.

Work Step by Step

a) We can see, from the given graph, that the pressure at point 1 is $$P_1=\color{red}{\bf 100}\;\rm kPa$$ In the first process, the gas undergoes an adiabatic process, so $$P_1V_1^\gamma=P_2V_2^\gamma$$ Hence, $$V_1=V_2\left[\dfrac{P_2}{P_1}\right]^{1/\gamma}$$ where $\gamma$ for a diatomic gas is given by $\gamma=C_P/C_V=(7R/2)/(5R/2)=7/5=\bf 1.4$ $$V_1=(1000)\left[\dfrac{400}{100}\right]^{1/1.4}$$ $$V_1=\color{red}{\bf 2692}\;\rm cm^3$$ And for the adiabatic process, $$T_1V_1^{\gamma-1}=T_2V_2^{\gamma-1}$$ Hence, $$T_1=T_2\left[ \dfrac{V_2}{V_1} \right]^{\gamma-1}=400\left[ \dfrac{1000}{2692} \right]^{1.4-1}$$ $$T_1=\color{red}{\bf 269.2}\;\rm K$$ Now we can find the number of moles, using the ideal gas law and data of point 2. $$n=\dfrac{P_2V_2}{RT_2}=\dfrac{(400\times 10^3)(1000\times 10^{-6})}{(8.31)(400)}$$ $$n=\color{blue}{\bf 0.1203}\;\rm mol$$ _________________________________________________________ b) $$\textbf{The first process 1$\rightarrow$2: [Adiabtic] }$$ $$Q_{1\rightarrow 2}= \color{red}{\bf 0}\;\rm J$$ $$(\Delta E_{th})_{1\rightarrow 2}=\frac{5}{2}nR(T_2-T_1) $$ $$(\Delta E_{th})_{1\rightarrow 2}=\frac{5}{2}(0.1203)(8.31)(400-269.2) $$ $$(\Delta E_{th})_{1\rightarrow 2}=\color{red}{\bf 326.9}\;\rm J $$ In such a process, $$$(\Delta E_{th})_{1\rightarrow 2}=-(W_s)_{1\rightarrow 2}$$ Hence, $$ (W_s)_{1\rightarrow 2}=\color{red}{\bf -326.9}\;\rm J $$ $$\textbf{The second process 2$\rightarrow$3: [Isothermal] }$$ $$(Ws)_{2\rightarrow 3}=\int_2^3PdV=\int_2^3\dfrac{nRT}{V}dV=nRT\int_2^3\dfrac{dV}{V}$$ $$(Ws)_{2\rightarrow 3}= nRT\ln\left[\dfrac{V_3}{V_2}\right]= (0.1203)(8.31)(400)\ln\left[\dfrac{4000}{1000}\right]$$ $$(Ws)_{2\rightarrow 3}=\color{red}{\bf 554}\;\rm J$$ It is an isothermal process, so $$(\Delta E_{th})_{2\rightarrow3}= \color{red}{\bf 0}\;\rm J $$ And hence, $$Q_{2\rightarrow3}=(Ws)_{2\rightarrow 3}=\color{red}{\bf 554}\;\rm J$$ $$\textbf{The third process 2$\rightarrow$3: [Isobaric] }$$ $$(Ws)_{3\rightarrow 1}=P\Delta V=P_3(V_1-V_3)\\ (Ws)_{3\rightarrow 1}=(100\times 10^3)(2692-4000)\times 10^{-6}$$ $$(Ws)_{3\rightarrow 1}=\color{red}{\bf- 130.8}\;\rm J$$ $$(\Delta E_{th})_{3\rightarrow 1}=\frac{5}{2}nR(T_1-T_3) $$ $$(\Delta E_{th})_{3\rightarrow 1}=\frac{5}{2}(0.1203)(8.31)(269.2-400) $$ $$(\Delta E_{th})_{3\rightarrow 1}=\color{red}{\bf -326.9}\;\rm J $$ $$Q_{3\rightarrow 1}=nC_P\Delta T=\frac{7}{2}nR(T_1-T_3) $$ $$Q_{3\rightarrow 1}=\frac{7}{2}(0.1203)(8.31)(269.2-400) $$ $$Q_{3\rightarrow 1}=\color{red}{\bf -457.6}\;\rm J$$ \begin{array}{|c|c|c|c|} \hline & \Delta E_{th}\;{\rm (J)}& W_s\;{\rm (J)}&Q\;{\rm (J)}\\ \hline 1\rightarrow 2& 326.9& -326.9&0 \\ \hline 2\rightarrow 3 & 0& 554&554 \\ \hline 3\rightarrow1&-326.9 & -130.8&-457.7\\ \hline {\rm Sum}& 0 & 96.3&Q_{in}=554\\ \hline \end{array} ________________________________________________ c) The work done by this engine per cycle is 96.3 J, as we see in the table above. $$W_{\rm cycle}=\color{red}{\bf 96.3}\;\rm J$$ The thermal efficiency of the engine is given by $$\eta=\dfrac{W_{out}}{Q_{in}}=\dfrac{96.3}{554}$$ $$\eta=\color{red}{\bf 0.17}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.