Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 19 - Heat Engines and Refrigerators - Exercises and Problems - Page 553: 62

Answer

a) $0.088$ b) $0.5$

Work Step by Step

$\textbf{In the first process}[1\rightarrow 2],$ which is an isothermal one, the change in the thermal energy is zero. So, $$\boxed{(\Delta E_{th})_{1\rightarrow 2}= \color{red}{\bf 0}\;\rm J} $$ Thus, $$(W_s)_{1\rightarrow 2}=Q_{1\rightarrow 2}=\int_1^2PdV=nRT_1\int_1^2\dfrac{dV}{V}$$ $$(W_s)_{1\rightarrow 2}=Q_{1\rightarrow 2}=nRT_1\ln\left[\dfrac{V_2}{V_1}\right]$$ where the volume is halved. $$(W_s)_{1\rightarrow 2}=Q_{1\rightarrow 2}=nRT_1\ln\left[\dfrac{\frac{1}{2}V_1}{V_1}\right]$$ $$\boxed{(W_s)_{1\rightarrow 2}=Q_{1\rightarrow 2}=-\ln(2)nRT_1}$$ Since this is an isothermal process $\boxed{T_1=T_2}$, so $$P_1V_1=P_2V_2=P_2(\frac{1}{2}V_1)$$ where $\boxed{V_2=\frac{1}{2}V_1}$ Thus, $$\boxed{P_2=2P_1}$$ $\textbf{In the second process}[2\rightarrow 3],$ which is an isobaric one, $$(W_s)_{2\rightarrow 3}=P_2\Delta V $$ where $P_2=2P_1$, $V_3=V_1$ and $V_2=\frac{1}{2}V_1$ Hence, $$(W_s)_{2\rightarrow 3}= 2P_1(V_1-\frac{1}{2}V_1)$$ $$\boxed{(W_s)_{2\rightarrow 3}= P_1V_1=nRT_1}$$ $$(\Delta E_{th})_{2\rightarrow 3}=nC_{\rm V}\Delta T=\frac{5}{2}nR(T_3-T_2)$$ And, $$Q_{2\rightarrow 3}=nC_{\rm P}\Delta T=\frac{7}{2}nR(T_3-T_2)$$ And since it is an isobaric process, so $$\dfrac{V_2}{T_2}=\dfrac{V_3}{T_3}$$ where $V_2=\frac{1}{2}V_1$, $V_3=V_1$, and $T_2=T_1$ $$T_3=\dfrac{T_2V_3}{V_2}=\dfrac{V_1T_1}{\frac{1}{2}V_1}= 2T_1$$ $$\boxed{T_3 =2T_1}$$ Plugging into $$(\Delta E_{th})_{2\rightarrow 3}= \frac{5}{2}nR(2T_1-T_1)$$ $$\boxed{(\Delta E_{th})_{2\rightarrow 3}=\frac{5}{2}nRT_1}$$ And hence, $$\boxed{Q_{2\rightarrow 3}=\frac{7}{2}nRT_1}$$ $\textbf{In the third process}[3\rightarrow 1],$ which is an isochoric one, $$\boxed{(W_s)_{3\rightarrow 1}=0\;\rm J} $$ Hence, $$(\Delta E_{th})_{3\rightarrow1}= Q_{3\rightarrow1}=\frac{5}{2}nR(T_1-T_3)=\frac{5}{2}nR(T_1-2T_1)$$ $$\boxed{(\Delta E_{th})_{3\rightarrow1}= Q_{3\rightarrow1}=-\frac{5}{2}nRT_1 }$$ ---- a) The thermal efficiency of this heat engine is given by $$\eta=\dfrac{W_{net}}{Q_{in}}=\dfrac{(W_s)_{1\rightarrow 2}+(W_s)_{2\rightarrow 3}+(W_s)_{3\rightarrow 1}}{Q_{2\rightarrow3}}$$ $$\eta=\dfrac{-\ln(2)nRT_1+nRT_1+0}{\frac{7}{2}nRT_1}=\dfrac{-\ln(2)+1}{\frac{7}{2}}$$ $$\eta=\color{red}{\bf 0.088}$$ ___________________________________________________________ b) The maximum thermal efficiency of this heat engine is given by $$\eta_{\rm max}=1-\dfrac{T_{\rm min}}{T_{\rm max}}=1-\dfrac{T_1}{2T_1}$$ $$\eta_{\rm max}=\color{red}{\bf 0.5}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.