Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 19 - Heat Engines and Refrigerators - Exercises and Problems - Page 553: 63

Answer

See the detailed answer below.

Work Step by Step

First, we need to find $P_1$ at the initial point using the ideal gas law. $$P_1=\dfrac{nRT_1}{V_1}=\dfrac{(0.20)(8.31)(600)}{(2000\times 10^{-6})}=\bf 498.6\;\rm kPa$$ Now we need to find $P_2$; noting that from 1 to 2 is an isothermal process. $$P_2=\dfrac{nRT_1}{V_2}=\dfrac{(0.20)(8.31)(600)}{(4000\times 10^{-6})}=\bf 249.3\;\rm kPa$$ Now we need to find $P_3$; where from 2 to 3 the gas undergoes an isochoric process, so $V_2=V_3$ $$P_3=\dfrac{nRT_3}{V_2}=\dfrac{(0.20)(8.31)(300)}{(4000\times 10^{-6})}=\bf 124.65\;\rm kPa$$ Now we need to find $P_4$; where from 3 to 4 the gas undergoes an isothermal process, so $T_3=T_4$, $$P_4=\dfrac{nRT_3}{V_2}=\dfrac{(0.20)(8.31)(300)}{(2000\times 10^{-6})}=\bf 249.3\;\rm kPa$$ See the graph below; --- Now we need to find the work done by the system in one cycle. $$W_s=(W_s)_{1\rightarrow2}+(W_s)_{2\rightarrow3}+(W_s)_{3\rightarrow4}+(W_s)_{4\rightarrow1} $$ The two process from 2 to 3 and from 4 to 1 are isochoric processes, so the work done here is zero. $$W_s=(W_s)_{1\rightarrow2}+0+(W_s)_{3\rightarrow4}+0$$ The two other processes are isothermals, so $$W_s=nRT_1\int_1^2\dfrac{dV}{V} +nRT_3\int_3^4\dfrac{dV}{V} $$ $$W_s=nRT_1\ln\left[\dfrac{V_2}{V_1} \right]+nRT_3\ln\left[\dfrac{V_4}{V_3} \right]$$ Plugging the known; $$W_s=(0.20)(8.31)\left((600)\ln\left[\dfrac{4000}{2000} \right]+ (300)\ln\left[\dfrac{2000}{4000} \right]\right)$$ $$W_s=\color{red}{\bf 345.6}\;\rm J$$ To find the engine efficiency, we need to find $Q_{in}$ so we have to find the heat exchange in each process. During the two isothermal processes, the thermal energy does not change, so $$Q=W_s$$ Hence, $$Q_{1\rightarrow2}=(W_s)_{1\rightarrow2}=nRT_1\ln\left[\dfrac{V_2}{V_1} \right]$$ $$Q_{1\rightarrow2}=(0.20)(8.31) (600)\ln\left[\dfrac{4000}{2000} \right]=\bf 691.2\;\rm J$$ $$Q_{3\rightarrow4}=(W_s)_{3\rightarrow4}=nRT_3\ln\left[\dfrac{V_4}{V_3} \right]$$ $$Q_{3\rightarrow4}=(0.20)(8.31) (300)\ln\left[\dfrac{2000}{4000} \right]=\bf -345.6\;\rm J$$ In the two isochoric processes, the work done is zero, so $$Q=\Delta E_{th}$$ Hence, $$Q_{2\rightarrow3}=(\Delta E_{th})_{2\rightarrow3}=\frac{3}{2}nR(T_3-T_2)$$ $$Q_{2\rightarrow3}=\frac{3}{2}(0.20)(8.31) (300-600)=\bf -747.9\;\rm J$$ $$Q_{4\rightarrow1}=(\Delta E_{th})_{4\rightarrow1}=\frac{3}{2}nR(T_1-T_4)$$ $$Q_{4\rightarrow1}=\frac{3}{2}(0.20)(8.31) (600-300 )=\bf 747.9\;\rm J$$ Thus, $$Q_{in}=Q_{1\rightarrow2}+Q_{4\rightarrow1}=691.2+747.9$$ $$Q_{in}=\color{blue}{\bf 1439.1}\;\rm J$$ Therefore, $$\eta=\dfrac{W_s}{Q_{in}}=\dfrac{345.6}{1439.1}=\color{red}{\bf0.24}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.